Preview

Topical Issues of Processing of Meat and Milk Raw Materials

Advanced search

Biochemical activity of lactic acid bacteria promising for use in the production of reduced-fat cheese

Abstract

The article presents the results of studies of lipolytic and proteolytic activities under different cultivation conditions of 27 strains of lactobacilli, as well as data on the ability to produce exopolysaccharides. The properties of microorganisms are the determining biochemical factors in the process of ripening cheese with a reduced fat content, for the formation of the organoleptic characteristics of the product. The experimental results showed that the strains have strain-specific protease activity when incubated at optimal and low temperature conditions, while for most strains a decrease in proteolytic activity is observed when the cultivation temperature is lowered. The absence of lipolytic activity in the studied strains was revealed. The ability to produce exopolysaccharides was discovered for some strains.

About the Authors

E. A. Dvoezhenova
Institute for Meat and Dairy Industry
Belarus

Minsk



N. K. Zhabanos
Institute for Meat and Dairy Industry
Belarus

Minsk



D. V. Mukha
Institute for Meat and Dairy Industry
Belarus

Minsk



N. N. Furik
Institute for Meat and Dairy Industry
Belarus

Minsk



References

1. Reformulating foods to meet current scientific knowledge about salt, sugar and fats: Keeping Food Safety on the Agenda for 15 years – The SAFE consortium / N. Belc [et al.] // Trends Food Sci. Technol., 2019. – Vol. 84 – P. 25-28.

2. Both low- and regular-fat cheeses mediate improved insulin sensitivity and modulate serum phospholipid profiles in insulin-resistant rats / A. R. Hanning [et al.] // J. Nutr. Biochem., 2019. – Vol. 64 – P. 144-151.

3. Total dairy consumption in relation to overweight and obesity in children and adolescents: A systematic review and meta-analysis / N. Babio [et al.] // Obes. Rev. Off. J. Int. Assoc. Study Obes., 2022. – Vol. 23 Suppl 1 – P. 13400.

4. Milk and dairy products: good or bad for human health? An assessment of the totality of scientific evidence / T. K. Thorning [et al.] // Food Nutr. Res., 2016. – Vol. 60 – P. 10.3402/fnr.v60.32527.

5. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies / J. Guo [et al.] // Eur. J. Epidemiol. – 2017. – Vol. 32, № 4. – P. 269-287.

6. Fermented dairy foods intake and risk of cancer / K. Zhang [et al.] // Int. J. Cancer. – 2019. – Vol. 144, № 9. – P. 2099-2108.

7. Low-fat cheese in the focus of dietary nutrition / S. Gm [et al.] // Vopr. Pitan. – 2022. – Vol. 91, № 5.

8. Cheeses with reduced sodium content: Effects on functionality, public health benefits and sensory properties / A. G. Cruz [et al.] // Trends Food Sci. Technol. – 2011. – Vol. 22, № 6. – P. 276-291.

9. Reduction of Sodium and Fat Levels in Natural and Processed Cheeses: Scientific and Technological Aspects / M. E. Johnson [et al.] // Compr. Rev. Food Sci. Food Saf. – 2009. – Vol. 8, № 3. – P. 252-268.

10. Improvement of the quality of low-fat cheese using a two-step strategy: 2012 IDF International Symposium on Cheese Ripening and Technology / S. Skeie [et al.] // Int. Dairy J. – 2013. – Vol. 33, № 2. – P. 153-162.

11. Properties of polysaccharides and glutamine transaminase used in mozzarella cheese as texturizer and crosslinking agents / H. Li [et al.] // LWT, 2019. – Vol. 99 – P. 411-416.

12. Karaman, A. D. Improving quality characteristics of reduced and low fat Turkish white cheeses using homogenized cream / A. D. Karaman, A.S. Akalın // LWT - Food Sci. Technol. – 2013. – Vol. 50, № 2. – P. 503-510.

13. Manufacture of low-fat Cheddar cheese by exopolysaccharide-producing Lactobacillus plantarum JLK0142 and its functional properties / J. Wang [et al.] // J. Dairy Sci. – 2019. – Vol. 102, № 5. – P. 3825-3838.

14. Influence of probiotic adjunct cultures on the characteristics of low-fat Feta cheese / M. E. Ahmed [et al.] // Food Sci. Nutr. – 2021. – Vol. 9, № 3. – P. 1512-1520.

15. Savijoki, K. Proteolytic systems of lactic acid bacteria / K. Savijoki, H. Ingmer, P. Varmanen // Appl. Microbiol. Biotechnol. – 2006. – Vol. 71, № 4. – P. 394-406.

16. Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria / M. Kieliszek [et al.] // Molecules. – 2021. – Vol. 26, № 7. – P. 1858.

17. McSweeney, P. L. H. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review / P. L. H. McSweeney, M. J. Sousa // Le Lait. – 2000. – Vol. 80, № 3. – P. 293- 324.

18. Torino, M. I. Biopolymers from lactic acid bacteria. Novel applications in foods and beverages / M. I. Torino, G. Font de Valdez, F. Mozzi // Front. Microbiol., 2015. – Vol. 6 – P. 834.

19. Hassan, A. N. ADSA Foundation Scholar Award: Possibilities and challenges of exopolysaccharideproducing lactic cultures in dairy foods / A. N. Hassan // J. Dairy Sci. – 2008. – Vol. 91, № 4. – P. 1282-1298.

20. M. V. Zalashko. Issledovanija proteolitichsekoj aktivnosti molochnokislyh bakterij [Studies of proteolytic activity of lactic acid bacteria] / M. V. Zalashko, N. V. Obrazcova, Je. I. Savchenko // Nauka i tehnika, 1970. – S. 56- 68.

21. V. V. Lysak. Mikrobiologija [Microbiology]: uchebnoe posobie / V. V. Lysak. – Minsk: BGU, 2007. – 430 s.

22. Growth phase and growth medium effects on the peptidase activities of Lactobacillus helveticus / O. Kenny [et al.] // Int. Dairy J. – 2003. – Vol. 13, № 7. – P. 509-516.

23. Microbial response to environmental stresses: from fundamental mechanisms to practical applications / N. Guan [et al.] // Appl. Microbiol. Biotechnol. – 2017. – Vol. 101, № 10. – P. 3991- 4008.

24. Hebert, E. M. Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062 / E. M. Hebert, R. R. Raya, G. S. De Giori // Appl. Environ. Microbiol. – 2000. – Vol. 66, № 12. – P. 5316-5321.

25. Functional characterization of the proteolytic system of Lactobacillus sanfranciscensis DSM 20451T during growth in sourdough / N. Vermeulen [et al.] // Appl. Environ. Microbiol. – 2005. – Vol. 71, № 10. – P. 6260-6266.

26. Gudkov A. V. Syrodelie: tehnologicheskie, biologicheskie i fiziko-himicheskie aspekty [Cheese making: technological, biological and physico-chemical aspects] / Gudkov A. V. – Moskva: DeLi print, 2004. – 804 s.

27. Production and characterization of a tributyrin esterase from Lactobacillus plantarum suitable for cheese lipolysis / M. Esteban-Torres [et al.] // J. Dairy Sci. – 2014. – Vol. 97, № 11. – P. 6737-6744.

28. Tanasupawat, S. Characterization and lipolytic activity of lactic acid bacteria isolated from Thai fermented meat / S. Tanasupawat, M. Phoottosavako, S. Keeratipibul // J. Appl. Pharm. Sci. – 2015. – Vol. 5, № 3. – P. 006-012.

29. Collins, Y. F. Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge / Y. F. Collins, P. L. H. McSweeney, M. G. Wilkinson // Int. Dairy J. – 2003. – Vol. 13, № 11. – P. 841-866.

30. Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic and antibacterial proteins / I. García-Cano [et al.] // Appl. Microbiol. Biotechnol. – 2019. – Vol. 103, № 13. – P. 5243-5257.

31. Characterization of an exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibet Kefir / J. Wang [et al.] // Carbohydr. Polym, 2015. – Vol. 125 – P. 16-25.

32. Isolation and characterisation of exopolysaccharide-producing Weissella and Lactobacillus and their application as adjunct cultures in Cheddar cheese / K. M. Lynch [et al.] // Int. Dairy J. – 2014. – Vol. 34, № 1. – P. 125-134.


Review

For citations:


Dvoezhenova E.A., Zhabanos N.K., Mukha D.V., Furik N.N. Biochemical activity of lactic acid bacteria promising for use in the production of reduced-fat cheese. Topical Issues of Processing of Meat and Milk Raw Materials. 2022;(17):129-139. (In Russ.)

Views: 133


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8755 (Print)