1. Bal'-Prilipko L.V. Biotekhnologicheskie priemy pri posole myasnogo syr'ya / L.V. Bal'Prilipko, B.I. Leonova, A.I Brona., V.A. Kovtun // Nauchnyi rezul'tat. Tekhnologii biznesa i servisa. - 2018. - T. 4, № 3, S. 46-55.
2. Papamanoli E. et.al. Characterization of lactic acid bacteria isolated from a Greek dryfermented sausage in respect of their technological and probiotic properties / E. Papamanoli et.al. // Meat Science. - 2003. - Vol. 65. - P. 859 - 867.
3. Leroy F. Functional meat starter cultures for improved sausage fermentation / F. Leroy, J. Verluyten, L. De Vuyst // Int. J. Food Microbiol. - 2006. - Vol. 106. - P. 270-285.
4. Jones R. J. et.al. Isolation of lactic-acid bacteria with inhibitory activity against pathogens and spoilage organisms associated with fresh meat / R. J. Jones et.al. // Food Microbiol. - 2008. - Vol. 25. - P. 228-234.
5. Marques J. L. et.al. Bacteriocin-like substances of Lactobacillus curvatus P99 : charac-terization and application in biodegradable films for control of Listeria monocytogenes in cheese / J. L. Marques et.al. // Food Microbiol. - 2017. - Vol. 63. - P. 159-163.
6. Greifová G. et.al. Analysis of antimicrobial and immunomodulatory substances pro-duced by heterofermentative Lactobacillus reuteri / G. Greifová et.al. // Folia Microbiol (Praha). - 2017. - Vol. 62(6). - P. 515-524.
7. Salas-Jara M. J. et.al. Biofilm forming Lactobacillus: new challenges for the devel-opment of probiotics / M. J. Salas-Jara et.al. // Microorganisms. - 2016. - Vol. 4(3). - P. 35.
8. Krasnikova L. V. Obshchaya i pishchevaya mikrobiologiya: Ucheb. posobie. Chast' II / L. V. Krasnikova, P. I. Gun'kova, O. A. Savkina // - SPb. - Universitet ITMO. - 2016. - 127 s.
9. Talon R. et.al. Safety improvement and preservation of typical sensory qualities of traditional dry fermented sausages using autochthonous starter cultures / R. Talon et.al. // Int. J. Food Microbiol. - 2008. - Vol. 126. - P. 227-234.
10. Tamang J. P. Diversity of microorganisms in global fermented foods and beverages / J. P. Tamang, K. Watanabe, W. H. Holzapfel // Front. Microbiol. - 2016. - Vol. 7. - P. 377.
11. Jimenez M. E. et.al. Microorganisms present in artisanal fermented food from South America / M. E Jimenez et.al. // Sec. Food Microbiology. - 2022. - Vol. 13.
12. Minyu S. et.al. Characterization of selected Lactobacillus strains for use as probiotics / S. Minyu et.al. // Food Sci Anim Resour. - 2015. - Vol. 35(4) - P. 551.
13. Hernández-Macedo M. L. Microbial deterioration of vacuum-packaged chilled beef cuts and techniques for microbiota detection and characterization: a review / M. L. Hernández-Macedo, G. V. Barancelli, C. J. Contreras-Castillo // Brazilian Journal of Microbiology. - 2011. - Vol. 42. - P. 1-11.
14. Immonen K. Variation of residual glycogenglucose concentration at ultimate pH values below 5.75 / K. Immonen, E. Puolanne // Meat Sci. - 2000. - Vol. 55. - P. 279-283.
15. Dave D. Meat spoilage mechanisms and preservation techniques: a critical review / D. Dave, A. E. Ghaly // American Journal of Agricultural and Biological Sciences. - 2011. - Vol. 6. - P. 486-510.
16. Bendall J. Postmortem changes in muscle. The structure and function of muscle / J. Bendall // 1973. - P. 243-309.
17. Wang W. et.al. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress / W. Wang et.al. // PLoS One. - 2018. - Vol. 13.
18. Kask S. et.al. Physiological properties of Lactobacillu s paracasei, L. danicus and L. curvatus strains isolated from Estonian semi-hard cheese / S. Kask et.al. // Food Research International. - 2003. - Vol. 36. - P. 1037-1046.
19. Ammor M. S. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. / M.S. Ammor, B. Mayo // Meat Sci. - 2007. - Vol. 76. - P. 138-146.
20. Zagorec M. Lactobacillus sakei: a starter for sausage fermentation, a protective culture for meat products / M. Zagorec, M.C. Champomier-Vergès // Microorganisms. - 2017. - Vol. 5(3). - P. 56-69.
21. Yingying H. et.al. Application of lactic acid bacteria for improving the quality of reduced-salt dry fermented sausage: texture, color, and flavor profiles / H. Yingying et.al. // College of Food Science. - Northeast Agricultural University. - 2022. - Vol. 154. - P. 112723.
22. Yulong Z. et.al. Co-fermentation with Lactobacillus curvatus LAB26 and Pediococcus pentosaceus SWU73571 for improving quality and safety of sour meat / Z. Yulong et.al. // Meat Science. - 2020. - Vol. 170. - P. 108240.
23. Muthukumarasamy P. Survival of Escherichia coli O157:H7 in dry fermented sausages containing microencapsulated probiotic lactic acid bacteria / P Muthukumarasamy, R. A Holley // Food Microbiol. - 2007. - Vol. 24(1) P. 82-84.
24. Shul'ga N. M., Zakvasochnye kul'tury dlya proizvodstva tverdykh sychuzhnykh syrov / N. M. Shul'ga // Produkty i ingredienty. - 2011. - №1 (76). - S. 36 - 39.
25. Dogareva N. G. Produkty iz molochnogo syr'ya. T. 3 Syry / N. G. Dogareva, O.V. Bogatova // Orenburg: IPK GOU OGU. - 2010. - 210 s.
26. Ruiz-Martinez R. C. et.al. Bacteriocin production and inhibition of Listeria monocyto-genes by Lactobacillus sakei subsp. sakei 2a in a potentially synbiotic cheese spread / R. C. Ruiz-Martinez et.al. // Food Microbiology. - 2015. - Vol. 48. - P. 143-152.
27. Okada Y. et.al. Growth of Listeria monocytogenes in refrigerated ready-to-eat foods in Japan / Y. Okada et.al. // Food Addit Contam Part A Chem Anal Control Expo Risk Assess. - 2013. - Vol. 30 (8). - P. 1446-1449.
28. Marques J. L. et.al. Bacteriocin-like substances of Lactobacillus curvatus P99: characterization and application in biodegradable films for control of Listeria monocytogenes in cheese / J. L. Marques et.al. // Food Microbiol. - 2017. - Vol. 63. - P. 159-163.
29. Mu Q. Role of Lactobacillus reuteri in human health and diseases / Q. Mu, V. J. Tavella, X. M. Luo // Front Microbiol. - 2018. - Vol. 9. - P. 757.
30. Cleusix V. et.al. Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria / V. Cleusix et.al. // BMC Microbiol. - 2007. - Vol. 7. - P. 101.
31. Kšonžeková P. et.al. Exopolysaccharides of Lactobacillus reuteri: Their influence on adherence of E. coli to epithelial cells and inflammatory response / P. Kšonžeková et.al // Carbohydr Polym. - 2016. - Vol. 5;141. - P. 9-31. Wang Y. Exopolysaccharide synthesized by Lactobacillus reuteri decreases the ability of enterotoxigenic Escherichia coli to bind to porcine erythrocytes / Y. Wang, M. G Gänzle, C. Schwab // Appl Environ Microbiol. - 2010. - Vol. 76(14). - P. 6-4863.
32. Ortiz-Rivera Y. et.al. Production of reuterin in a fermented milk product by Lactobacillus reuteri: Inhibition of pathogens, spoilage microorganisms, and lactic acid bacteria / Y. Ortiz-Rivera et.al. // J. Dairy Sci. 2017. - Vol. 100. - P. 1-11.
33. Langa, S. et.al. In situ reuterin production by Lactobacillus reuteri in dairy products / S. Langa et.al. // Medina Food Control. - 2013. - Vol. 33. - P. 200-206.
34. Minervini F et.al. Manufacture of Fior di Latte cheese by incorporation of probiotic lactobacilli / F Minervini et.al. // J Dairy Sci. - 2012. - Vol. 95(2). - P. 20-508.
35. Sreekumar R et.al. Volatile sulfur compounds produced by probiotic bacteria in the presence of cysteine or methionine / R Sreekumar et.al. // Lett Appl Microbiol. - 2009. - Vol. 48(6). - P. 82-777.